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Motivations

Diagnostic errors play a role in up to 10% of patient deaths
21 percent of adults report having personally experienced a medical error

4% of radiology interpretations contain clinically significant errors

Improving Diagnosis in Health Care. National Academy of Medicine. Washington, DC: The National Academies Press, 2015.
Americans’ Experiences with Medical Errors and Views on Patient Safety. Chicago, IL: University of Chicago and IHI/NPSF, 2017.

Waite S, Scott J, Gale B, Fuchs T, Kolla S, Reede D. Interpretive Error in Radiology. Am J Roentgenol. 2016:1-11
Berlin L. Accuracy of Diagnostic Procedures: Has It Improved Over the Past Five Decades? Am J Roentgenol. 2007;188(5):1173-1178.




Empower radiologists to provide high
level diagnostic interpretation in setting
of increased volume and limited
resources

Motivations

NOT to replace clinicians and
radiologists




- Disagreement with colleagues —
25% of the time

- Disagreement with themselves —
30% of the time

Abujudeh, HH, Boland, GW, Kaewalai, R, et al. Abdominal and Pelvic Computed Tomography (CT) Interpretation: discrepancy rates among experienced radiologists. Eur Radiol.2010;20(8): 1952-7



ACTING AS AN EXPERT
CONSULTANT TO YOUR
REFERRING PHYSICIAN
(THE DOCTOR WHO
SENT YOU TO THE
RADIOLOGY
DEPARTMENT OR
CLINIC FOR TESTING) BY
AIDING HIM OR HER IN
CHOOSING THE PROPER
EXAMINATION,
INTERPRETING THE
RESULTING MEDICAL
IMAGES, AND USING
TEST RESULTSTO
DIRECT YOUR CARE

© O O

TREATING DISEASESBY ~ CORRELATING MEDICAL RECOMMENDING DIRECTING
MEANS OF RADIATION IMAGE FINDINGS WITH ~ FURTHER APPROPRIATE RADIOLOGIC
(RADIATION OTHER EXAMINATIONS EXAMINATIONS OR TECHNOLOGISTS
ONCOLOGY) OR AND TESTS TREATMENTS WHEN (PERSONNEL WHO
MINIMALLY INVASIVE, NECESSARY AND OPERATE THE
IMAGE-GUIDED CONFERRING WITH EQUIPMENT) IN THE
THERAPEUTIC REFERRING PHYSICIANS ~ PROPER PERFORMANCE
INTERVENTION OF QUALITY EXAMS
(INTERVENTIONAL
RADIOLOGY)
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Implementing Machine Learning in
Radiology Practice and Research

OBJECTIVE. The purposes of this article are to describe concepts that radiologists
should understand to evaluate machine learning projects. including common algorithms, su-
pervised as opposed fo unsupervised techniques, statistical pitfalls, and data considerations
for training and evaluation. and to briefly describe ethical dilemmas and legal risk.

CONCLUSION. Machine learning includes a broad class of computer programs that
improve with experience. The complexity of creating. training, and monitoring machine
learning indicates that the success of the algorithms will require radiologist involvement for
years fo come, leading to engagement rather than replacement.

t is difficult to ignore the growing be straightforward to build, many topics out-
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Current Applications and Future Impact of
Machine Learning in Radiology
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Radiology 2018; 288:318-328 ® https://doi.org/10.1148/radiol.2018171820 @ Content code: @

Recent advances and future perspectives of machine learning techniques offer promising applications in medical imaging. Machine
learning has the potential to improve different steps of the radiology workflow including order scheduling and triage, clinical deci-
sion support systems, detection and interpretation of findings, postprocessing and dose estimation, examination quality control,
and radiology reporting. In this article, the authors review examples of current applications of machine learning and artificial intel-
ligence techniques in diagnostic radiology. In addition, the future impact and natural extension of these techniques in radiology
practice are discussed.

©RSNA, 2018

ecent advances in machine learning offer promise in nu- In supervised learning, data labels are provided to the al-

merous industries and applications, including medical ~ gorithm in the training phase (there is supervision in train-
imaging (1). Within the innovations of data science, ma-  ing). The expected outputs are usually labeled by human ex-

chine learning is a class of techniques and area of research ~ perts and serve as ground truth for the algorithm. The goal



Al: Artificial
Intelligence

ML:
Machine
Learning

NN:
Neural
Networks

DL: Deep
Learning

Definitions

* Al: When computers do
things that make humans
seem intelligent

* ML: Rapid automatic
construction of
algorithms from data

* NN: Powerful form of
machine learning

e DL: Neural networks with
many layers




Augmented

Intelligence

* Systems that are designed to enhance human capabilities

* Contrasted with Artificial Intelligence, which is intended
to replicate or replace human intelligence

* In healthcare (HC), a more appropriate term is 'augmented
intelligence,' reflecting the enhanced capabilities of human
clinical decision making when coupled with these
computational methods and systems

AMA Passes First Policy
Recommendations on Augmented
Intelligence

For immediate release: Jun 14, 2018



Challenge #1: Dataset

BIG DATA & DEEP LEARNING
A Deep_
e Collection of data

* Text and/or images
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Data Challenges

* Do | have enough?
e Balanced?

* Representative?

* Annotated/labeled?
* De-identified?

 Metadata
* Facial scrubbing
 Burned in data

* Sharing rights?

inbute Name rag Action Lomments
Station Name (0008,1010) Removed Their values are only relevant to the equipment
Device Serial Number (0018,1000)
Institution Name (0008,0080) Removed Their values are not normally relevant for
Institution Address (0008,0081) research on image processing or aided
Referring Physician’s Name (0008,0090) diagnosis algorithms
Referring Physician’s Address (0008,0092)
Referring Physician’s Telephone Numbers (0008.0094)

1704B/C 4
Persist Off
2D OptHSCT
Fr RateSury
SonoCT®
XRes™

Series Description

Protocol Name

Patient’s Sex

Patient’s Size

Patient's Weight

Requested Procedure Description
Scheduled Procedure Step Description
Performed Procedure Step Description

0008,1038)
(0018,1030)
(0010,0040)
(0010,1020)
(0010,1030)
(0032,1060)
{0040,0007)
{0040,0254)

Unchanged

Unchanged

algorithms

Attributes that may be relevant for research
algorithms

Their values are important for image processing
algorithms



Al Data Challenges

Heterogeneity of data
Heterogeneity of workflow

Determination of ground truth

Validation of Al models at different institutions

FDA approval of Al models for clinical use
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Research Letter

September 22/29, 2020

Geographic Distribution of US Cohorts
Used to Train Deep Learning Algorithms

Amit Kaushal, MD, PhD'; Russ Altman, MD, PhD'; Curt Langlotz, MD, PhD?

OAuthor Affiliations | Article Information

JAMA. 2020;324(12):1212-1213. doi:10.1001/jama.2020.12067



34 states aren’t
represented in any medical
Al training sets

* Many academic research centers
that do artificial intelligence and
machine learning research are in
health care hubs like
Massachusetts, California, and New
York.

* Data from California, home to
Silicon Valley, was included in about
40% of the algorithms.

Table. US Patlent Cohorts Used for Tralning Clinical Machine Learming
Algorithms, by State®

States No. of studies

California 22
Massachusetts 15
MNew York
Pennsylvania
Maryland
Colorado
Connecticut

[l
b

Mew Hampshire
MNorth Carolina
Indiana
Michigan
Minnesota

Ohio

Texas

Vermont

bt | i | i | b | i | s | b | B | B | B | B | kN

Wisconsin

 Fifty-six studies used 1 or more geographically identifiable US patient cohorts
in the training of their dinical machine learning algorithm. Thirty-four states
wera not represented in geographically identifiable cohorts: Alabama, Alaska,
Arizona, Arkansas, Delaware, Florida, Georgia, Hawaii, Idaho, lllinois, lowa,
Kansas, Kentucky, Louisiana, Maine, Mississippi, Missouri, Montana, Mebraska,
Nevada, New Jersay, Mew Mexico, Morth Dakota, Okdahomna, Oregon, Rhode
Island, South Carolina, South Dakota, Tennessee, Utah, Virginia, Washington,
Wast Virginia, and Wyoming.




Handling
Medical Image
Data

Willemink MJ. Published
Online: February 18, 2020

https://doi.org/10.1148/radi
01.2020192224

Label data

o

Structure data He?

Data access

¢ — Unprocessed Querying data
) image data
uality control
s ) Data de-identification
> »»/
Data transfer

(Local or external storage)
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Challenge #2: Annotation
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Imaging Annotation Value

Ground Truth

Prospective
Annotation
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Retrospective
Annotation



Algorithms

A set of rules or instructions
given to an Al, neural
network, or other machine
to help it learn on its own

Clustering, classification,
regression, and
recommendations




Classification

Models

4 M

Logistic Regression

Decision Tree

Random Forest

Support Vector Machine

Gradient-Boosted Tree

Multilayer Perceptron

Naive Bayes



Challenge #3: Validation

* Does the Al tool work in all
scenarios?

“The most likely hypothesis is the simplest one consistent with the data™ * Patient population
* Imaging modalities

* Overfitting

* The production of an analysis
that corresponds too closely
or exactly to a particular set
of data, and may therefore
fail to fit additional data or
predict future observations
reliably

* Overfitting and underfitting
can occur in machine
learning, in particular

inadequate good compromise



Input » M Qutput

Black Box

In science, computing, and engineering, a
black box is a device, system or object
which can be viewed in terms of its inputs
and outputs (or transfer characteristics),
without any knowledge of its internal
workings

Its implementation is "opaque" (black)



Black Box Problem

Possible to observe incoming data (input) and outgoing data (output) in
algorithmic systems, but their internal operations are not very well
understood




Strong Black Boxes

* Al with decision-making processes that are entirely opaque to humans

* No way to determine (a) how the Al arrived at a decision or prediction, (b)
what information is outcome determinative to the Al, or (c) to obtain a
ranking of the variables processed by the Al in the order of their importance

* This form of black box cannot even be analyzed by reverse engineering the
Al’s outputs




Weak Black Boxes

Decision-making process of a weak black box are also opaque to humans

Weak black boxes can be reverse engineered or probed to determine a loose
ranking of the importance of the variables the Al takes into account

Allow a limited and imprecise ability to predict how the model will make its
decisions




Algorithms

Although not all medical algorithms are
black box, black box algorithms can
allow the health system to leverage
complex biological relationships well
before those relationships are
understood



Proof in the

Pudding?

What if, inevitably, such an algorithm
proves to be unreasonably effective at
diagnosing a medical condition or
prescribing a treatment, but you have
no scientific understanding of how this
link actually works?



Heterogeneity of data

Heterogeneity of workflow

Implementing
Al in

Determination of ground truth

Validation of Al models at different

Radiol ogYV. = institutions
FDA approval of Al models for clinical

Challenges W use




Radiology: Artificial Intelligence

Integrating Al Algorithms into the Clinical Workflow
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Department of Radiology, Duke University Medical Center, Durham, NC (C.R.); NVIDIA, Santa Clara, Calif (B.G.); Department of Diagnostic Radiology and Nuclear
Medicine, University of Maryland School of Medicine, Baltimore, Md (E.S.); and Department of Radiology, Stanford University, Stanford, Calif (D.L.R.). Received January
12, 2021; revision requested March 3; revision received June 16; accepted July 14. Address correspondence to K.J. (e-mail: juluruk@mskec.org).



Routine Workflow

Al Integrated Workflow

Integrating Al algorithms into Clincal Workfiow

Images sent to
—
PACS ~
= R — & —
Exam completed 3 \|

in RIS

A
E ired Trainee generates Attending Sign-off Report available
Xam acquire preliminary report in medical record

Component 1:

Exam Orchestrator

- ~
Monitor PACS/RIS for selected exams \ }] Ciieation
i ded?
Pass images to Al fiseded
-
A
Pass exam information to Results DB Trainee reviews images

and preliminary report

Yes:
Resident Data Entry

Component 5:
Presentation & Delivery

Present preliminary report and Al

results
Component 2: {l 5 o g oo Component 6: {]
Deliver preliminary report to dictation
Quality Control system Error Correction
Monitor events meeting defined T Display current results
criteria
Component 4: Permit physician to make corrections
Notify appropriate staff Results Processing

3
Synthesize data and generate

preliminary report

<
\_/ i
Comp 2 Component 7:
Results Database Performance Dashboard

»| Monitor overall system performance
Al algorithm E
: v

H Component 8:

Active Learning

Retrain Al Algorithm with corrected
findings




Implementing Al: 3 Possible scenarios

1. Alondemand
2. Automated image analysis
3. Discrepancy management

P. Lakhani, NIBIB Al in Medical Imaging Workshop, Aug 23, 2018
P. Lakhani et al. JACR https://doi.org/10.1016/j.jacr.2017.09.044



https://doi.org/10.1016/j.jacr.2017.09.044

Scenario 1

1. Al ondemand

. For a single image or series of images
. PACS =>radiologist =» Al server = PACS, RIS, EHR
. Radiologist would be in control of asking relevant Al interpretations

. Requires manual step



Scenario 2

2. Automated Al image analysis

. Exams automatically sent to Al server (before reading)

. modality =» Al server =» PACS =>»radiologist = RIS, EHR
. Helps to prioritizing reading order -> reduce TAT

. Radiologist views Al findings before final report is made

. Radiologist is able to ensure accuracy



Scenario 3

3. Discrepancy management
. As in 2. but results are automatically routed to RIS or EHR
. Requires discrepancy management
. Al -> preliminary -> RIS/EHR -> staff radiologist -> final
. Accurate Al needed (highly sens and spec), high confidence
. Fastest TAT although potential risk
. Might increase calls to radiology reading room
. Might have medicolegal consequences

Source: P. Lakhani, NIBIB Al in Medical Imaging Workshop, Aug 23, 2018



Vicente Gilsanz
Osman Ratib

< Performance of a Deep-Learning RADIOGRAPHIC ATLAS OF
3 Neural Network Model in e 1m0 W Hand Bone Age
AssgSS{ng Skeletal .Maturlty on S A Digital Abas |
Pediatric Hand Radiographs’ of SkeletalMatrity
— L -

David B. Larson, MD, MBA
Matthew C. Chen, MS Tﬂble 2
Matthew P. Lungren, MO, MPH

Safiwan S. Halabi, MD

Ot Lot D, 10 Summary Statistics of Paired Interobserver Difference between Bone Age Estimate of
+  Each Reviewer and Mean of the Other Three Human Reviewers’ Estimates, Compared
with That of Model
Variable Clinical Report Reviewer 1 Reviewer 2 Reviewer 3 Mean
MAD
Reviewer 0.65 0.55 0.53 0.69 0.61
Model 0.51 0.53 0.53 0.53 0.52
Pvalue (paired ttest) =<.01 .90 99 <.0

Note.—Unless otherwise noted, data are expressed as years. The authors of the clinical report were treated collectively as a
single reviewer.

https://doi.org/10.1148/radiol.2017170236



Saliency Maps

a. b. C.

Figure 6: Original image with superimposed saliency map for sample hand radiographic images in three male patients age 4 years (a), 15 years (b), and 17 years (c).

40



Saliency Maps

Original Research

Assessing the (Un)Trustworthiness of Saliency Maps
for Localizing Abnormalities in Medical Imaging

Mishanth Arun®*, 'Nathan Gaw®, &Praveer Singh. "YKen Chang, Mehak Aggarwal, Bryan Chen,

Katharina Hoebel, "&'Sharut Gupta, "&'ay Patel, “'Mishka Gidwani, Julius Adebayo, "5 Matthew D. Li,
|ayashree Kalpathy-Cramer ESee fewer authors A

* N.A. and N.G. contributed equally to this work.
v Author Affiliations

Published Online: Oct 6 2021 |



Saliency Maps

* Using two large publicly available radiology datasets (SIIM-ACR
Pneumothorax Segmentation and RSNA Pneumonia Detection),
quantified the performance of eight commonly used saliency map
techniques in regard to their 1) localization utility (segmentation and
detection), 2) sensitivity to model weight randomization, 3)
repeatability, and 4) reproducibility. We compared their
performances versus baseline methods and localization network
architectures, using area under the precision-recall curve (AUPRC)
and structural similarity index (SSIM) as metrics.



Saliency Maps

* The use of saliency maps in the high-risk domain of medical imaging
warrants additional scrutiny and recommend that detection or
segmentation models be used if localization is the desired output of
the network.



Implementing
BA Model

Clinically

Institutional Review Board (IRB)
Data Use Agreement (DUA)
Consent (Patient? Radiologist?)
Interfaces

Workflow

Al Model



. . J:\;;'" How does exposing the prediction of
Validation of 1 the Al model to the attending
k- radiologist prospectively affect
BA tOOl by diagnosis?

Randomized
Control Trial

Automation Bias




BONE AGE Al RCT
Prospective study design

® Randomized at the exam level

Experiment
group

Send Al result
to rad

Control
group

Do nothing
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Inset Dagnoss Codes.,
PROCEDURE COMMENTS: Single radiograph of the left hand for estimation of skeletal age.
FINDINGS:
Sex: [Female]
Date of birth: [04/20/2008]
Study date: [02/08/2018]
Chronologic age on study date: [9 years, 9 months (117 months)]
[ Properties By Greulich and Pyle, the bone age is estimated as
Fields
| motes ' At the chronologic age of [9 years, 9 months (117 months)], using the Brush Foundation data,
i asamets | the mean bone age for calculation is [10 years, 3 months (123 months)].
g "' Two standard deviations at this age is [23 months], giving a normal range of [100 to 146 months .

(+/- 2 standard deviations)].
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Abbreviated Timeline of Implementing
BA Model at Stanford Children’s

10/16 - Submitted DRA for review

11/29 - Conference call with DRA committee (Lily from ISO, Annie from PO)

12/1 - Meeting with Dr. Halabi in OU; asked for intro to LPCH IS team

12/6 - Meeting with Marvin for DICOM-SR

12/8 - Follow-up meeting for DICOM-SR; Requested firewall change

12/22 - DRA approved

1/3 - Firewall change approved

1/9 - IRB submitted

1/29 - Modlink can receive my DICOM-SR messages, but cannot interpret them

2/23 - IRB approved

3/5 - Configured LPCH DICOM router to route new studies to the machine learning model
3/28 - Configured Modlink to receive DICOM-SR and tested in test environment; but we need to wait for new Nuance key (at
this point, all technical integration work on our end is complete)

4/11 - Received Nuance key; required another firewall change for this key

4/26 - Firewall change approved

4/27 - Change control and additional LPCH security review for the first time

5/8 - Security review form submitted



IRB

17

07
18

01
19
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Data Use Agr.

Privacy Review

Implementation

Integration
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ORIGINAL RESEARCH - PEDIATRIC IMAGING

Artificial Intelligence Algorithm Improves Radiologist
Performance in Skeletal Age Assessment: A Prospective
Multicenter Randomized Controlled Trial
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ogy (D.B.L.,J.M.S., C.PL., M.PL,, 5.5.H.), Stanford University School of Medicine, Stanford, Calif; Department of Radiology, New York University School of Medicine,
New York, NY (N.R.E, S.V.L., N.A.S., M.E.B.); Department of Radiology, Emory School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Ga (S.5.M.);
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S.LK,, R.D.); Department of Radiology, Harvard Medical School and Boston Childrens Hospital, Boston, Mass (K.E., S.PP); Department of Radiology, Yale School of
Medicine, New Haven, Conn (B.J.D., C.T.S.); and Department of Radiology, Kansas University School of Medicine, Kansas City, Kan (B.M.E.). Received January 14,
2021; revision requested March 16; revision received June 24; accepted July 22. Address correspondence to D.K.E. (e-mail: dkeng@stanford.edu).



IRB

* Average duration to approval: 5
months Levels of IRB Review

*More than “minimal risk” to subjects

*Not covered under other review categories

* Example: interventions involving physical or emotional
discomfort or sensitive data

* Common Problems:

* Not greater than minimal risk

* Fits one of the 9 Expedited Review
Categories*

* Examples: Collection of biospecimens by
noninvasive means, Research with existing
d e callscted For h

purposes in which subjects are identifiable

* No central IRB; had to be
approved at every institution

* Patient consent

* Less than “minimal risk”

* Fits one of the 6 Exempt
Categories®

* Example: Research with de-
identified records, anonymous
sur\'e_\'s

*Defined by federal regulation (45 CFR 46)



Data Use Agreements (DUA)

* Average duration: 4 months

e Common problems:
* Legal departments




Security and Privacy Reviews

* Average duration: 1 month

e Common Problems:
PRIVACY

° 1 1 ) || Ca
Latency among information "‘Ea

security and privacy offices SECURITY

* Lack of clarity in the process E ﬂa
ol :




Clinical Integration

* Average duration: 1 month

e Common Problems:
* Server provisioning

* Institution-specific interface with
speech recognition

* Institution-specific data
preprocessing




Customization Per Site

SKELETAL DEVELOPMENT
* Report format varies per site OF THE BAND S WRIST

A Radiographic Atlas

* Brush Foundation?

* Interpolate between bone ages?

e Greulich & Pyle?




Challenging Clinical Scenarios

* What BA reference should we use?
 G&P
* Snell
* Tanner-Whitehouse

* Does BA model account for brachymetacarpia, dysplasia,
malnutrition?

* Does BA model take into account demographics, clinical
history, referring clinician practice?



Tracking Performance

* Manual extraction of bone age interpretation from reports




Establishing Gold Standard

* Interpretation by a panel of 4 radiologists for every exam




Overall progress:
86.3% of real's completed (7469/8657)
91.3% of fake's completed (210/230)

Progress per labeler:

alexandertowbin: 100.0% of real's completed (300/300) | 100.0% of fake's completed (10/10)
arashzandieh: 100.0% of real's completed (599/599) | 100.0% of fake's completed (10/10)
briandillon: 100.0% of real's completed (300/300) | 100.0% of fake's completed (10/10)
chrisanton: 100.0% of real's completed (596/596) | 100.0% of fake's completed (10/10)
cicerosilva: 100.0% of real's completed (300/300) | 100.0% of fake's completed (10/10)
jayneseekins: 100.0% of real's completed (595/595) | 100.0% of fake's completed (10/10)
kirstenecklund: 100.0% of real's completed (299/299) | 100.0% of fake's completed (10/10)
markbittman: 100.0% of real's completed (600/600) | 100.0% of fake's completed (10/10)
mattlungren: 100.0% of real's completed (299/299) | 100.0% of fake's completed (10/10)
michaelfrancavilla: 100.0% of real's completed (300/300) | 100.0% of fake's completed (10/10)
naomistrubel: 100.0% of real's completed (300/300) | 100.0% of fake's completed (10/10)
rebeccadennis: 100.0% of real's completed (598/598) | 100.0% of fake's completed (10/10)
rossfilice: 100.0% of real's completed (300/300) | 100.0% of fake's completed (10/10)
safwanhalabi: 100.0% of real's completed (300/300) | 100.0% of fake's completed (10/10)
shaileelala: 100.0% of real's completed (299/299) | 100.0% of fake's completed (10/10)
summerkaplan: 100.0% of real's completed (299/299) | 100.0% of fake's completed (10/10)
susansharp: 100.0% of real's completed (300/300) | 100.0% of fake's completed (10/10)
sarahmilla: 99.7% of real's completed (299/300) | 100.0% of fake's completed (10/10)
davidlarson: 77.3% of real's completed (232/300) | 100.0% of fake's completed (10/10)
nancyfefferman: 67.6% of real's completed (200/296) | 0.0% of fake's completed (0/10)
sanjayprabhu: 33.7% of real's completed (101/300) | 100.0% of fake's completed (10/10)
maceverist: 17.3% of real's completed (52/300) | 100.0% of fake's completed (10/10)
ericariedesel: 0.2% of real's completed (1/577) | 0.0% of fake's completed (0/10)



POST-RCT
Reflections

* Integration was not the hardest part;

paperwork was

* Bone age Al validation is a one-off




POST-RCT

Takeaways

* We need a layer of technical and legal infrastructure across
institutions to support prospective validation of Al models at scale

e Standards
* Data
e Sharing
* Implementation
* Clinical practice



Takeaways

Goals to be accomplished for using Al in daily clinical practice

1.

2
3.
4

Al solutions should address a significant clinical need

Technology must perform at least as well as the existing standard approach

Substantial clinical testing must validate the new technology

New technology should provide improvements in patient outcomes, patient

quality of life, practicality in use, and reduce medical costs

COORDINATED APPROACH between multiple stakeholders is needed




Coordinated

Approach

End users must first define the

purpose (clinical use case)

Developers must translate users’

needs to program code

Managers must coordinate resources

and strategies to bring SW in workflow

Companies must mass distribute the

SW product and integrate it with
existing infrastructure

Policy experts and legal teams must

ensure there are no legal/ethical
barriers



S Financial

Considerations

Difficult to define a business plan for
a narrow Al product that may solve
one clinical question on one modality

May be a pricing disparity between
what customers will pay and the costs
involved

Who will pay? Insurance, patient,
health system, radiology group,
vendor?

Who is in charge of Al model
implementation? Vendor, hospital IS?

What happens when the model fails or
is not fully validated?



Technical Considerations

Source L Tl e
“Raw” Data

Labeled
Training Data

Image
Recon
Methods

New
Machine
Learning
Methods

New
Image
Labeling

output layer

input layer

hidden layer

Clinical Evaluation\

Decision
Support Actionable
Systems
map  |earning
p— Explanation

Methods

CT scan icon by Sergey Demushkin from the Noun Project



Building Radiology Al:
The Role of Professional Organizations

* Educate clinical users of Al algorithms

* Develop a robust technical workforce B
XSNA

* Convene collaborations: radiologists, scientists, industry

* Support development of Al use cases AER®

* Assemble publicly-available training data sets @@
» Advocate for and provide research funding for Al clll\ﬂ
* Establish standards for Al data and algorithms <

* Encourage balanced regulation of Al technology




Summary

Al is a powerful tool with many
applications that can help radiology
practices today beyond image
interpretation

Integrating Al models holds promise for
improving radiology practices and
patient care

More research needs to be done
regarding the evaluation of Al in a clinical
setting, including its impact on workflow
and value of services

No matter how Al is implemented in the
workflow, the radiologists will have an
important role in ensuring accuracy,
safety and quality of the algorithms
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